
Critical

Logs to

Monitor: A

Guide for

SOC

Analysts

Page 2|36

Table of Contents

1. Introduction ... 3

1. Importance of Log Monitoring in SOC.. 3

2. Scope and Purpose of the Guide... 4

2. Key Types of Logs .. 6

1. System Logs (Windows, Linux, macOS.. 6

2. Network Logs (Firewall, Router, IDS/IPS) ... 9

3. Application and Database Logs .. 15

4. Security Logs (AV, EDR, XDR) .. 19

5. Cloud Logs (AWS, Azure, GCP) and Container Logs (Docker, Kubernetes) 23

6. IoT/SCADA/OT Logs .. 28

3. Key Monitoring Practice... 33

1. Detecting Anomalies and Incidents (Alerts, Correlation).. 33

2. Log Retention and Security... 34

3. Supporting Tools (SIEM, SOAR) ... 35

Page 3|36

1.Introduction
Logs are the footprints of every digital activity, serving as a chronological record of events within

systems, networks, and applications. In a modern Security Operations Center (SOC), analysts

rely on these logs to detect threats, investigate security incidents, and maintain an

organization’s overall security posture. Without structured and well-monitored logs, even the

most advanced security solutions can miss critical indicators of compromise (IoCs) or fail to

correlate suspicious behaviors across multiple systems. The goal of this guide is to highlight

which logs matter most, why they are essential, and how to approach their monitoring in a way

that benefits both junior and mid-level SOC analysts.

1. Importance of Log Monitoring in SOC

In any sizable IT infrastructure, raw data volumes can be massive—firewalls alone can generate

thousands of log entries per second. While these logs may sometimes appear as unremarkable

lines of text, they hold valuable insights that help detect and counteract security threats. Proper

log monitoring is crucial for several reasons:

1. Visibility andContext
Logs provide context by showing what happened, when it happened, and how it was

executed. This visibility is essential in distinguishing normal behaviors from anomalies.

For example, an unexpected privilegeescalation in a Windows system log can point to

lateral movement by an attacker. Similarly, repeated authentication failures in a Linux

environment might indicate a brute-force attack.

2. Incident Detection and Response
Automated alerts from a SIEM (Security Information and Event Management) platform

often originate from suspicious patterns in logs. These alerts enable SOC analysts to

quickly identify and respond to potential incidents. For instance, correlation rules might

flag a user logging in from two geographically distant locations within a short timeframe,

suggesting a stolen credential.

3. Audit andCompliance

Many regulatory frameworks, such as PCI DSS, HIPAA, or ISO 27001, mandate log

retention and regular review. By monitoring logs, organizations ensure they meet

compliance requirements and can produce a clear audit trail during investigations or

audits. Logs are often the first place auditors check to confirm security controls are in

place and functioning as intended.

4. Threat Hunting
Beyond detection, logs form the basis for proactive threat hunting. Analysts look for

unusual patterns—like the execution of a PowerShell script in an environment where

PowerShell usage is rare—to uncover stealthy attacks. By analyzing logs over time,

threat hunters can identify trends and adversary tactics that might be missed by

automated systems alone.

5. Forensic Investigations
When an incident does occur, well-structured logs are the key to forensic investigations.

They help recreate the timeline of an attack, show which systems were accessed, and

highlight the data that was exfiltrated. Detailed logs of user actions, network

Page 4|36

connections, and system calls can be the difference between accurately attributing an

incident and letting attackers remain undetected.

Real-World Example

Consider a scenario where a SOC analyst notices unusual outbound traffic from a critical

server. By reviewing firewall logs correlated with Windows Event Logs, the analyst uncovers a

malicious process communicating with an external IP address. Ǫuick analysis shows that the

communication began right after a suspicious privilege escalation event. This correlation can

guide incident response teams to isolate the server, contain the threat, and remediate the

vulnerability before data is compromised.

Practical Tip

On Linux systems, commands like journalctl -p warning -r can help youquickly locate higher-

priority events in reverse chronological order, allowing faster triage of potential security issues.

On Windows, tools such as wevtutil qe Security /rd:true /f:text /q:"*" |findstr /i "4624 4625 4634

4672" can filter the security event log for specific Event IDs related to logons.

1.2. Scope and Purpose of the Guide

This guide targets both new and mid-level SOC analysts who want to enhance their skills in log

monitoring. It covers common sources of logs—like operating systems, networks, applications,

and security tools—and highlights what to look for in each. By focusing on the most critical logs

and describing how they fit into the overall security strategy, this guide aims to streamline the

day-to-day work of SOC professionals. Specifically, it aims to:

• IdentifyKey LogSources

We will look at systemlogs (Windows, Linux, macOS), network logs (firewall, router,

IDS/IPS), application anddatabase logs, security logs (AV,EDR, XDR), cloud logs

(AWS, Azure, GCP), container logs (Docker, Kubernetes), and IoT/SCADA/OTlogs. The

primary focus is on what makes each category critical, how to collect them, and which
events are most indicative of a security issue.

• Present Practical Monitoring Techniques
From correlation rules to anomaly-based detection, we will discuss the practices that

translate raw logs into actionable insights. We will also cover topics like logretention,

logsecurity, and best practices around data classification to ensure that sensitive logs

remain protected.

• Showcase Real-Life Use Cases
Each log type comes with its unique set of challenges and attack vectors. We will walk

through realistic scenarios—such as detecting lateral movement, privilege escalation,

or malicious uploads—and demonstrate how the logs serve as vital evidence.

• Guide on SupportingTools
SIEM (Security Information and Event Management) and SOAR (Security Orchestration,

Automation, and Response) tools are at the heart of modern SOCs. The guide explains

how these platforms integrate with different log sources, automate alerting, and help

orchestrate response actions.

Page 5|36

• Encourage Continuous Learning
Cyber threats evolve rapidly, and so do best practices in logging and monitoring. With

references to resources like NISTSP 800-92 (Guide to Computer Security Log

Management) and official vendor documentation (e.g., Microsoft’s Windows Event Log

documentation), this guide points readers to reliable sources for ongoing education.

By focusing on these areas, the guide aims to equip analysts with the knowledge and skills to

prioritize logs effectively and detect potential breaches before they escalate. Througha mix of

theoretical explanation and practical examples, readers will gain confidence in setting up

logging strategies, tuning alerts, and conducting thorough investigations.

Page 6|36

2.KeyTypes ofLogs

1. System Logs (Windows, Linux, macOS

System logs form the backbone of incident detection and response efforts, providing analysts

with the essential baseline data needed to investigate abnormal events, track user activities,

and diagnose security threats. Across Windows, Linux, and macOS, these logs share the

common goal of recording key operating system (OS) events, though each platform organizes

and structures logs in its own way.Understanding how they work, what they log, and how to

interpret them is crucial for SOC analysts.

Windows Logs

Common Log Sources

• System Log: Captures events generated by the Windows operating system and its built-

in services. It records driver issues, service startups and shutdowns, and kernel-level

messages.

• Application Log: Stores application-specific events, such as errors, warnings, or

informational messages from software installed on the system (e.g., database clients,

productivity tools).

• Security Log: Focuses on security-related events: login attempts, account lockouts,

and user right assignments. Often used for auditing and forensic investigations.

• Other Logs: Windows also creates dedicated logs for specialized services, like DFS

Replication and PowerShell, which can be viewed under the Applications and

Services Logs in the Event Viewer.

Practical Monitoring Tips

1. Event Viewer:Built into Windows, Event Viewer offers a quick way to view and filter

events. Analysts can group events by severity (Critical, Error, Warning, Information) or by

Event ID.

2. Filtering and Searching: Use XMLfiltering in Event Viewer or PowerShell commands to

hunt for specific event IDs (e.g., 4624 for successful logins, 4625 for failed logins).

3. Security Baselines: Monitor high-value Event IDs. For example:

o 4624 (Successful account login)

o 4625 (Failed login)

o 4672(Special privileges assigned to a user)

o 4688 (Anew process has been created)

o 4648(A logon was attempted using explicit credentials)

4. PowerShell Logging: By enabling Module Loggingand Script Block Logging, analysts

can track suspicious or obfuscated commands. Refer to Microsoft Docs (PowerShell

Logging) for guidelines.

Page 7|36

Example: Filtering Security Events via PowerShell

Get-WinEvent -LogName Security | Where-Object {

$_.Id -in 4624, 4625

}

This command pulls Security Log events for successful and failed logins, enabling quick

detection of abnormal activity.

Linux Logs

Syslog andJournald

Most Linux distributions rely on syslog or systemd-journald to collect and manage log

messages:

• /var/log/syslog or /var/log/messages: Contains informational and non-critical system

events.

• /var/log/auth.log or /var/log/secure: Focuses on authentication-related messages.

Essential for detecting brute-force login attempts, sudo activity, or SSH logins.

• /var/log/kern.log: Stores kernel-level messages, useful for diagnosing driver issues or

unusual kernel events.

• Journal Logs (systemd-based distros): Consolidates logs in a binary format, accessible

via journalctl.

Key AreastoMonitor

1. Authentication:Watch for repeated failed login attempts, new user additions in

/etc/passwd, or sudden changes in sudo usage.

2. Cron Jobs: Check /var/log/cronor associated logs for unauthorized scheduled tasks.

Cron jobs can be used by adversaries for persistence.

3. Kernel Messages: Investigate repeated kernel warnings or errors that could indicate

hardware issues or potential rootkit activity.

4. Service Logs: For services like Apache, Nginx, or SSH, monitor dedicated logs (e.g.,
/var/log/apache2/access.log, /var/log/nginx/access.log, /var/log/secure) for unexpected

traffic or repeated authentication failures.

Example: Using Journalctl

View all logs related to SSH

journalctl -u sshd

Filter logs for a specific time range

journalctl --since "2023-01-01" --until "2023-01-31"

This approach helps analysts quickly search for anomalies within a particular service or

timeframe.

Page 8|36

macOS Logs

Unified LoggingSystem

Since macOS Sierra (10.12), Apple introduced a unified logging system that stores log messages

in a structured format:

• Console App: The built-in Console allows viewing of system logs, diagnostic reports,

and crash logs.

• Log Commands: The log utility in the terminal offers extensive filtering, streaming, and

searching capabilities. For example:

#View live log messages (system-wide)

log stream --level=info

#Search for specific processes or errors

log show --predicate 'process == "sshd" AND eventMessage

CONTAINS "Failed password"'

• Subsystems and Categories: macOS logs categorize messages by subsystem (e.g.,

com.apple.networking) and category (e.g., connection). This helps analysts narrow

down events.

Security-Specific Logs

• /var/log/system.log:Retains many core system messages and is often the first stop

when troubleshooting.

• Apple System Log (ASL):Legacy logging that coexists with the unified logging system,

accessible via command-line tools for older macOS versions.

• Authentication Logs: Attempts to log in via SSH or local accounts can appear in
/var/log/asl/ or through the unified logging interface.

Monitoring andDetection

1. Focus onRepeatedFailures: Like Linux, repeated failed SSH attempts or unexpected

process launches warrant attention.

2. Check Crash Reports: Attackers sometimes induce crashes of security tooling. Crash

logs in macOS can provide early indicators of tampering.

3. Leverage Built-in Tools: Use the Console to filter logs by Process or Message Type.

Apple’s Developer documentation on Unified Logging provides details on advanced

usage.

Cross-Platform Considerations

Aspect Windows Linux macOS

LogFiles
Event Viewer (System,

Security, etc.)
/var/log/syslog,

/var/log/auth.log, etc.

Unified Logging System

(log show, log stream)

Page 9|36

Aspect Windows Linux macOS

Common

Tools

PowerShell, Event

Viewer, WMI
tail, grep, awk, journalctl Console App, log CLI

Alert Focus
Event IDs (4624, 4625,

etc.), policy changes

SSH failures, privilege

escalations, systemd

service errors

SSH failures, system

crashes, unexpected

subsystem messages

Centralization

Windows Event

Forwarding (WEF),

Sysmon logs to SIEM

Rsyslog, Syslog-ng,

systemd-journald to SIEM

Export logs via the log

collect feature or

streaming to a SIEM

Logging Agents and Centralization
Many organizations opt to forward Windows, Linux, and macOS logs to a central SIEM or log

management platform:

• Windows: Windows Event Forwarding (WEF), Sysmon for detailed process-level logging,

or third-party agents like NXLog or Splunk Universal Forwarder.

• Linux: Rsyslog, Syslog-ng, or systemd-journald can forward logs to remote servers.

Beats (Filebeat, Metricbeat) from Elastic can also collect and ship logs.

• macOS: Use third-party agents (e.g., Osquery for query-based logging, or Splunk,

Datadog agents) to unify logs under a single pane.

2.2. Network Logs (Firewall, Router, IDS/IPS)

Logs from network devices and security systems are among the most critical data sources in a

Security Operations Center (SOC). By analyzing firewall, router, and IDS/IPS logs, SOC analysts

gain visibility into traffic patterns, security events, and potential anomalies. This visibility is

crucial for identifying malicious behavior early and for responding to incidents before they can

propagate within the environment. Below are the key concepts, best practices, and real-world

scenarios that illustrate how to work effectively with network logs.

1. Firewall Logs

Firewalls are often the first line of defense, filtering traffic based on predefined rules. Monitoring

firewall logs provides insights into both permitted and denied network connections.

1. Common Fields in Firewall Logs

Typical firewall logs will include fields such as:

• Timestamp: The date and time the event was recorded.

• Source IP/Destination IP: IPaddresses of the client and server.

• Source Port/Destination Port: Ports used by the services or applications

communicating.

• Protocol: Network protocol in use (e.g., TCP, UDP, ICMP).

• Action: Indicates whether the traffic was allowed, denied, dropped, or rejected.

P a g e 10 |36

• Rule or Policy Name: Identifies which firewall rule triggered the log entry.

Firewalls may also log additional details like interface names (e.g., eth0, WAN, LAN), packet

size, or the reason for a deny or reject action. Modern firewalls, especially Next-Generation

Firewalls (NGFWs), can log application-level data and user information if integrated with identity

management systems.

Field Description Example Value

Timestamp Date and time of event 2025-01-25 10:15:32

Source IP Originating IPaddress 192.168.10.5

Destination IP Target IPaddress 10.0.5.20

Source Port Originating TCP/UDP port 53452

Destination Port Target TCP/UDP port 443

Protocol Network protocol (TCP, UDP, ICMP) TCP

Action Allowed, denied, dropped, etc. Allowed

Rule Name Firewall policy or rule name Block_Telnet

2. Practical Use Cases

• Blocked Connection Attempts: Monitoring repeated connection attempts on sensitive

ports (e.g., 22 for SSH or 3389 for RDP) can reveal brute-force attempts or port scans.

• Unusual Traffic Volumes: A sudden spike in traffic from a single IPor subnet might

indicate a DoS or DDoS attempt.

• Inboundvs. Outbound Monitoring: Outbound connections to suspicious IP addresses

or countries where the organization does not conduct business can be early indicators

of compromised hosts (e.g., malware calling home).

3. Example Firewall Log Analysis in SIEM

Below is an example Splunk query that filters for denied connections with a focus on TCP port

3389 (RDP):

index=firewall_logs action=DENY dest_port=3389

| stats count by src_ip, dest_ip, action, rule_name

This query helps highlight any source IPs that are repeatedly trying to reach RDP services but are

being denied, which might indicate an attempted intrusion.

2. Router Logs

Routers primarily forward packets between networks and maintain routing tables. Logs

generated by routers often focus on system messages, routing updates, and interface errors

rather than application-specific data. However, they are still critical for overall visibility,

especially in environments with distributed architectures.

Page 11|36

1. Types of Router Logs

• Systemor Event Logs: Includes messages about device reboots, software crashes, or

configuration changes.

• RoutingProtocol Logs: Information related to BGP, OSPF, EIGRP, or other routing

protocols.

• Interface Logs: Status changes on interfaces (up/down), packet errors (CRC errors,

collisions), and bandwidth usage.

• Authentication Logs: Successful or failed logins via SSH, Telnet, or console access to

the router.

Router logs often follow the standard Syslog format (e.g., Cisco routers with severity levels 0–7).

Integrating these logs into a SIEM allows analysts to correlate network topology changes with

security events (for instance, if a router interface goes down just before a security incident on

that segment).

2. Example: Cisco Router Syslog Messages

Cisco routers send Syslog messages with various severity levels. An example message might

look like this:

<189>Jan 25 10:25:10 MY-ROUTER: %LINK-3-UPDOWN: Interface

GigabitEthernet0/1, changed state to up

• 189 corresponds to the Syslog priority.

• %LINK-3-UPDOWN indicates a link status change with severity level 3 (Error).

• The message indicates which interface changed state.

In a SIEM, you might filter for %LINK-3-UPDOWN events to track unexpected interface state

changes. If an interface goes down suddenly, it may indicate a physical issue, misconfiguration,

or malicious activity aiming to disrupt network segments.

3. IDS/IPS Logs

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)monitor network

traffic for signs of malicious behavior, policy violations, or known attack signatures. While

firewalls typically operate at the transport or network layer, IDS/IPS solutions can inspect

packets in more depth (Layer 7), providing richer context about application-level threats.

1. IDSvs. IPS

• IDS(IntrusionDetection System): Detects potential threats and generates alerts. It

does not automatically block the traffic.

• IPS(IntrusionPreventionSystem): Detects threats and can take preventive actions,

such as dropping malicious packets or blocking IP addresses in real-time.

2. Common Fields in IDS/IPS Logs

• Signature ID:A unique identifier for the rule or signature triggered (e.g., Snort rules have

SID values).

Page 12|36

• Event or Alert Message: The name or description of the suspicious activity (e.g., “ET

TROJANZeus Tracker”).

• Severity or Priority: Indicates the criticality of the alert.

• Source IP/Destination IP/Ports: Information about the traffic flow.

• Action: Whether the traffic was detected, dropped, or allowed.

3.3. Practical Example with Suricata

Suricata is a popular open-source IDS/IPS engine. Suricata outputs JSON logs that can be

ingested by SIEM tools like Elasticsearch or Splunk. A typical Suricata alert entry in JSON format

might include:

{

"timestamp": "2025-01-25T10:30:45.123456+0000",

"flow_id": 1234567890,

"event_type": "alert",

"src_ip": "192.168.1.100",

"src_port": 53452,

"dest_ip": "10.0.5.20",

"dest_port": 80,

"proto": "TCP",

"alert": {

"action": "blocked",

"gid": 1,

"signature_id": 2010935,

"rev": 3,

"signature": "ET TROJAN Known Malicious Domain",

"category": "Trojan Activity",

"severity": 2

}

}

In the above example:

• signature_id: 2010935 corresponds to a Suricata rule ID that references a specific

Trojan signature.

• action: The traffic was blocked by Suricata (IPS mode).

• category:“Trojan Activity” indicates the type of threat.

Page 13|36

3.4. Real-Life Attack Scenarios

• SǪL InjectionAttempts: IDS/IPS solutions look for patterns in HTTP requests that

match known SǪL injection techniques.

• Exploit Kits: If a host attempts to download or connect to an exploit kit domain, IDS/IPS

logs can reveal the suspicious domain name and signature match.

• Lateral Movement: Attackers may try to move horizontally within a network. IDS/IPS

can detect unusual SMB or RDP traffic patterns.

4. Parsing and Analyzing Network Logs in Practice

1. Log Management and SIEM Integration

SOC analysts typically centralize firewall, router, and IDS/IPS logs into a SIEM for correlation and

analysis. This allows cross-referencing of events from multiple sources. For instance, if an IDS

alert indicates a Trojan signature and the firewall logs show outbound traffic to a suspicious IP,

the SIEM can generate a higher-priority alert.

Example Logstash configuration snippet to parse Suricata JSON logs:

input {

file {

path => "/var/log/suricata/eve.json"

type => "suricata"

codec => "json"

}

}

filter {

if [event_type] == "alert" {

mutate {

add_tag => ["suricata_alert"]

}

}

}

output {

elasticsearch {

hosts => ["localhost:9200"]

index => "suricata-alerts-%{+YYYY.MM.dd}"

}

}

Page 14|36

This configuration reads Suricata’s eve.json file, filters for alert events, and then tags them as

suricata_alert before sending them to Elasticsearch.

4.2. Correlation Rules

In a SIEM, correlation rules can look for conditions such as:

1. HighVolume of Denied Connections: If more than 100 firewall denies occur from the

same source IP in 5 minutes, generate an alert.

2. Multiple IDSAlerts for theSameHost: If a host triggers more than 3 different IDS

signatures within a short period, raise the priority of the incident.

3. Router Interface Down +IDS Alerts: If a critical interface goes down and multiple IDS

alerts are detected on adjacent network segments, investigate potential sabotage or

widespread compromise.

By creating correlation rules that combine different log types, SOC analysts can detect

coordinated attacks and reduce the volume of false positives.

5. Challenges and Best Practices

• Log Volume: Network devices can generate a massive amount of data. Using filters or

sampling may be necessary, but be cautious not to discard important information.

• Normalization: Different vendors (Cisco, Palo Alto, Fortinet, etc.) often have unique log

formats. Normalizing fields (e.g., ensuring consistent naming of src_ip, dest_ip) is

crucial for effective correlation.

• Encryption and Secure Transport: Ensure that log data is transmitted securely, for

instance using TLS for Syslog (Syslog over TLS).Unencrypted logs can be intercepted

and manipulated byadversaries.

• Regular Tuning: IDS/IPS rulesets need regular updates to reflect new threats. Similarly,

firewall policies should be reviewed to ensure they align with the evolving network

environment.

• Time Synchronization: NTP (Network Time Protocol) should be enabled and correctly

configured on all devices to maintain consistent timestamps. Accurate timestamps are

critical for event correlation.

6. References and Further Reading

• Official Suricata Documentation: https://suricata-ids.org/docs/

• Snort (IDS/IPS)Documentation: https://www.snort.org/

• Cisco Syslog Guide: https://www.cisco.com/c/en/us/support/docs/security-

vpn/syslog/

• FirewallBest Practices (NIST):

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-41r1.pdf

These sources provide authoritative insights into configuration, logging standards, and threat

detection patterns for network devices and security solutions.

http://www.snort.org/
http://www.cisco.com/c/en/us/support/docs/security-

Page 15|36

2.3.Application and Database Logs

Application logs capture events and behaviors tied directly to an application’s functionality.

They may include user interactions, system operations, exceptions, debug details, and custom

events defined by developers. Database logs, on the other hand, record all actions related to

data transactions, schema changes, authentication, and potential errors or performance

bottlenecks in a database system. Together, these logs provide a holistic view of how software is

functioning and how data is being accessed or manipulated. This is crucial for detecting

unauthorized activities, performance issues, and other anomalies. Below are the key

considerations, best practices, and real-world examples to help youeffectively monitor and

analyze both application and database logs.

Understanding Application Logs

Common Types of Application Logs

1. ErrorandExceptionLogs
These capture unexpected behaviors and stack traces. They’re typically generated by

frameworks such as Java’s Log4j or Logback, Python’s logging library, or .NET’s built-in

logging features.

2. Debug and Diagnostic Logs

These logs detail internal operations, often containing fine-grained information used

during development or troubleshooting. Debug logs can be extremely verbose, so

they’re typically enabled only in test or development environments unless a production

issue requires deeper insights.

3. Transactionor Event Logs
Applications that handle user transactions—such as e-commerce checkouts—often

generate transaction logs. These logs detail each step in the user flow (e.g., adding items

to a cart, checking out, payment processing).

4. Audit Logs

Some applications produce audit logs for compliance or security reasons. These logs

track user access, role changes, or critical configuration updates, helping you see who

did what and when.

Logging Frameworks and Formats

Modern applications often rely on standardized logging frameworks:

• Java (Log4j,Logback)

• .NET (Serilog, NLog)

• Python(logging)

• Node.js (winston, pino)

These frameworks allow developers to configure log levels, structure log messages (for

example, in JSON), and specify output targets like console, files, or external aggregation

services. Consistency in format is important for parsing and correlation within a SIEM.

Page 16|36

Example Configuration (Log4j2 in Java)
<Configuration status="warn">

<Appenders>

<File name="FileLogger" fileName="logs/application.log">

<PatternLayout pattern="%d{ISO8601} [%t] %-5level %logger{36}

- %msg%n" />

</File>

</Appenders>

<Loggers>

<Logger name="com.example.app" level="info" additivity="false">

<AppenderRef ref="FileLogger"/>

</Logger>

<Root level="error">

<AppenderRef ref="FileLogger"/>

</Root>

</Loggers>

</Configuration>

This snippet specifies an application.log file, using a pattern to log timestamps, thread names,

log levels, and the actual message. By setting the root level to error and the application logger to

info, you can avoid unnecessary noise.

Monitoring Application Logs in Practice

1. Establish Baseline Behavior
Knowing the normal application behavior (e.g., average response times, typical error

rates) helps detect anomalies, such as a sudden influx of specific exceptions that might

indicate an attack or misconfiguration.

2. Look forCommon Attack Patterns

Unauthorized access attempts often show up as repeated login failures, suspicious

parameters in URLs (e.g., SǪL injection probes), or unusual behaviors in session

management. Web applications might log 404 errors or suspicious HTTP methods in

higher frequency under attack.

3. Integration with SIEM
Tocorrelate application logs with system or network events, use a SIEM tool like Splunk,

IBMǪRadar, or ElasticSecurity. For example, by correlating an application’s “multiple

failed logins” event with a firewall log showing suspicious IP scanning, you can quickly

confirm or rule out an intrusion attempt.

4. Alerting and Thresholds

Threshold-based alerts on error rates, transaction volume drops, or spikes in exceptions

Page 17|36

can catch incidents early. Machine learning-driven anomaly detection in tools such as

Azure Sentinel or AWSSecurity Hub can further refine alerts by identifying patterns not

captured by static rules.

5. RetentionPolicies
Due to volume, application logs can grow quickly. You need to define retention policies

balancing security requirements and storage costs. Compliance frameworks (e.g., PCI

DSS, HIPAA) sometimes dictate minimum retention periods for specific log types.

Understanding Database Logs

Key Types of DatabaseLogs

1. Transaction Logs
Capture every change to the database’s data. They’re critical for recovery and forensic

analysis. For instance, in Microsoft SǪL Server, the transaction log tracks every

modification in the order they occur, enabling point-in-time recovery.

2. ErrorLogs
These highlight critical events, such as server startup issues or serious errors that affect

database availability. Examples include MySǪL’s error.log or Oracle’s alert logs.

3. General Ǫuery Logs (MySǪL)/Audit Logs(VariousVendors)

Record all queries received by the server or track account activity. They are invaluable in

detecting SǪL injection attacks, suspicious data extraction, or attempts at privilege

escalation.

4. SlowǪuery Logs
Found in MySǪL or PostgreSǪL, these capture queries that exceed a certain execution

time threshold. Slow queries might indicate performance issues or potential denial-of-

service attempts if queries arebeing manipulated byan attacker.

Practical Monitoring Strategies

1. Regular Reviewfor Suspicious Ǫueries
Monitor queries that drop or alter critical tables without expected change-control

tickets. Also look for wildcard searches or large data extracts happening at unusual

hours.

2. Privilege Abuse Detection
If a user with minimal privileges starts running queries typical of an administrator, it’s a

strong indicator of compromised credentials or privilege escalation. Enforcing least

privilege and then reviewing logs for anomalies is a potent strategy.

3. ErrorPattern Analysis
Repeated database error messages, such as “invalid column name” or “syntax error,”

can indicate attempts at SǪL injection. SOC analysts can configure SIEM correlation

rules to flag repetitive errors from a single source IP.

4. Performance Data
Logs that point to high resource usage or timeouts can be an early warning of a brute-

force or denial-of-service attack at thedatabase layer.

Page 18|36

Example Configurations and Ǫueries

MySǪL

Toenable the general query log:

SET GLOBAL general_log = 'ON';

SET GLOBAL general_log_file = '/var/log/mysql/general.log';

To enable the slow query log:

SET GLOBAL slow_query_log = 'ON';

SET GLOBAL long_query_time = 2; -- Queries taking longer than 2

seconds will be logged

Note: Logging all queries can significantly impact performance, so only enable it temporarily for

diagnostics or funnel logs to a centralized system where you can parse and analyze them

efficiently.

PostgreSǪL

PostgreSǪL has extensive logging configurations in postgresql.conf. For instance:

logging_collector = on

log_directory = 'pg_log'

log_filename = 'postgresql-%a.log'

log_statement = 'all'

log_min_duration_statement = 2000 # logs queries over 2ms

By setting log_statement to all, you can see every statement, though this is typically too verbose

for production.

Real-World Scenarios

• Detection of Data Exfiltration

A SOC analyst notices an application log showing unusual parameter values in a REST

API call. By cross-referencing the database logs, the analyst confirms multiple large

SELECT statements retrieving sensitive customer data. Additional correlation with

network logs shows a large data transfer to an external IP.The logs collectively point to

an ongoing data exfiltration attempt.

• Auditing for Compliance
In a financial services application, compliance requirements mandate auditing every

transaction. By reviewing application logs (which capture the logic layer) and the

database’s transaction logs (which capture the final record changes), auditors can

confirm that every deposit or withdrawal is authorized and properly executed.

• Identifying Performance Attacks
A series of slow queries might initially look like a performance bottleneck. However,

investigating further reveals that attackers are intentionally crafting resource-intensive

queries to degrade the application’s responsiveness. Alerts in the SIEM correlate these

slow queries with repeated 503 errors on the web server, confirming a denial-of-service

attempt.

Page 19|36

Additional Resources

• OWASPCheat Sheet Series: https://cheatsheetseries.owasp.org/
Offers guidelines on secure logging practices, specifically around sanitizing logs and

preventing log forging.

• MySǪL Official Docs: https://dev.mysql.com/doc/
Detailed instructions on configuring error logs, general query logs, and slow query logs.

• PostgreSǪL Documentation: https://www.postgresql.org/docs/

Contains comprehensive configuration guides for logging and auditing features.

• Microsoft SǪL Server Docs: https://docs.microsoft.com/en-us/sql/

Explains how to manageand interpret transaction logs, error logs, and other diagnostic

data.

• Oracle Database Docs: https://docs.oracle.com/en/database/
Provides details on the alert log, trace files, and advanced auditing configurations.

Comparisons and Data

LogType Examples Typical Use Case Potential Security Insight

Error/Exception
Stack traces, code

line references

Debugging application

crashes, identifying

faulty modules

Frequent exceptions might

hint at malicious input or

attempts to exploit

vulnerabilities

Transaction
E-commerce logs,

banking transactions

Auditing success/failure

of critical actions

Real-time monitoring helps

detect fraudulent

transactions

Audit (App C

DB)

User actions, role

changes, schema

modifications

Compliance with

regulations,

accountability

Pinpointing unauthorized

admin actions or privilege

escalations

Slow Ǫuery
Ǫueries exceeding a

time threshold

Performance tuning or

bottleneck analysis

Identifying possible DoS

attempts or resource

exhaustion attacks

When collecting and analyzing these logs, consider normalizing fields (timestamps, user IDs,

hostnames) so different log sources can be correlated effectively. Some SIEM platforms or

centralized logging solutions (e.g., the ELK Stack) allow you to define common field mappings

and dashboards that unify application and database insights.

2.4. Security Logs (AV,EDR, XDR)

Security logs generated by Antivirus (AV),Endpoint Detection and Response (EDR), and

Extended Detection and Response (XDR) solutions are crucial for modern SOC operations. They

offer granular visibility into potential threats affecting endpoints and the broader environment.

Below is an exploration of the fundamentals, along with real-world examples and guidance for

effective log monitoring.

http://www.postgresql.org/docs/

P a g e 20 |36

Understanding the Components

Antivirus (AV)Logs

Antivirus solutions focus primarily on detecting known malware signatures and blocking

suspicious files. Their logs typically include:

• Malware Detections: Alerts triggered when a file matches a known signature or exhibits

malicious behavior.

• Ǫuarantineand Remediation Actions: Logs showing which files were quarantined,

deleted, or otherwise neutralized.

• Update and Scan Events: Records of signature updates, scheduled scans, and on-

demand scan results.

Real-World Example

A traditional AV tool like Microsoft Defender Antivirus (part of Windows Security) generates

logs under the Windows Event Log:

• Event ID1116 indicates malware detection.

• Event ID5001 logs the scanning engine starting up.
By aggregating these event IDs in a SIEM, analysts can quickly see patterns of infection

attempts and confirm that updates have been applied.

Endpoint Detection and Response (EDR) Logs

EDR solutions expand on basic antivirus features by providing in-depth endpoint telemetry, real-

time threat detection, and response capabilities. Common log data includes:

• Process Creationand Termination: Detailed tracking of command-line parameters,

user context, and file paths.

• Behavioral Indicators: Observations related to suspicious activities such as code

injection, privilege escalations, or unusual registry modifications.

• Isolation and Response Actions: Logs showing when and why an endpoint was

isolated, network connections were blocked, or an automated script was run for

containment.

EDR logs often present a sequence of correlated events, making it easier for SOC analysts to

reconstruct the timeline of an attack. Tools like CrowdStrike Falcon, SentinelOne, or Carbon

Blackoffer dashboards that display triggered detection rules (e.g., MITRE ATTCCK techniques)

alongside automated remediation actions.

Sample EDR Log Analysis (Splunk)

Below is an example of how you might parse EDR logs in Splunk to identify suspicious child

processes of PowerShell:

index=edr_logs parent_process=PowerShell.exe

| stats count by child_process, user, host

| where count > 3

Page 21|36

This query looks for any child process spawned by PowerShell and flags any repeated

occurrences, which might indicate malicious scripts or living-off-the-land techniques.

Extended Detection and Response (XDR)Logs

XDR solutions take the endpoint-centric approach of EDR and extend it to incorporate data from

network appliances, cloud workloads, and applications. The goal is to unify detection,

investigation, and response across multiple layers of the ITenvironment.

• Cross-Source Correlation: XDR aggregates logs from endpoints, email gateways,

identity providers, and more, applying analytics to uncover hidden threats.

• Cloud andHybrid Integrations: Telemetry from cloud platforms and containerized

workloads often merges with endpoint data, offering a complete view of complex

attacks.

• Adaptive Response: Based on machine learning and correlation rules, XDR can trigger

automated playbooks that respond to threats in real time (e.g., disabling compromised

user accounts, isolating infected hosts, or blocking suspicious domains at the firewall).

Reference Architectures

• Microsoft 365 Defender integrates data from endpoints (Defender for Endpoint), email

(Defender for Office 365), identities (Azure Active Directory), and cloud apps (Defender

for Cloud Apps).

• PaloAlto Cortex XDRprocesses data from endpoints and integrates with network

sensors or firewalls to provide enhanced correlation.

Log Collection Best Practices

1. Centralize Logsin aSIEM:Consolidate all AV,EDR, and XDR logs into a SIEM platform

like Splunk, Elastic Stack, or IBMǪRadar. This ensures a single view for threat hunting

and alert triage.

2. Use Consistent LogFormatting: Where possible, standardize the format (e.g., JSON,

Syslog) to streamline parsing, correlation, and long-term storage.

3. Retain Sufficient History: Depending on regulatory requirements and threat modeling,

keep historical logs long enough to investigate slow-moving attacks or advanced

persistent threats.

4. Correlate Across Multiple Sources: Antivirus alerts alone may provide minimal

context. When cross-referenced with endpoint telemetry and user login patterns, they

reveal the bigger picture—especially relevant for advanced or multi-stage attacks.

5. Implement AutomatedDetection Rules: Leverage built-in detection capabilities of

your EDR/XDR solution and supplement them with custom rules tailored to your

environment. For example, create an alert when a known safe process spawns an

unusual child process (e.g., outlook.exe launching cmd.exe).

6. Leverage Threat Intelligence: Enrich detection events with threat intelligence feeds

(e.g., VirusTotal, AlienVault OTX). This helps validate suspicious activity, especially when

an alert references a known malicious domain or file hash.

Page 22|36

Common Security Events to Watch For

Event Type Key Indicators Example Tools

Malware

Detections

File hashes, known signatures, suspicious

file behaviors

Microsoft Defender,

McAfee, Symantec

Behavioral

Anomalies

Unusual registry modifications, abnormal

process trees

CrowdStrike Falcon,

SentinelOne

Privilege

Escalations

Attempts to change user privilegeor run

processes as admin
Sysmon +EDR correlation

Exfiltration

Attempts

Network connections to suspicious

domains or large data transfers

Palo Alto Cortex XDR,

Splunk logs

Persistence

Mechanisms

New services, startup items, scheduled

tasks

Sysmon +EDR detection

rules

Monitoring these events in near-real time allows SOC analysts to prioritize the highest-risk alerts

and initiate containment actions quickly.

Practical Monitoring Tips

• TrackFailed and Successful RemediationAttempts: If an AV tries to quarantine a file

repeatedly but fails, it could be a sign of advanced malware or user tampering.

• Monitor EDRAgent Health: Regularly ensure that EDR agents are running on all

endpoints. Unexpected agent downtime may be an early indicator of an attacker’s

attempt to disable security controls.

• Review Automated Playbook Outcomes: XDR platforms often run automated

responses. Confirm that these responses are both effective and aligned with your

organization’s incident response procedures.

• Engage With Vendor Documentation: Each AV, EDR, or XDR vendor has specific best

practices for log collection and interpretation. For instance, Microsoft Defender for

Endpoint publishes detailed logging guidelines at Microsoft Docs.

Example Incident Flow Using AV,EDR, and XDR

1. AVAlert: Triggers on a suspicious executable with a known malicious hash.

2. EDR Correlation: Maps the suspicious executable back to a process tree, showing it

was launched by an unusual script.

3. XDRVisibility: Confirms the script was downloaded from an unrecognized domain and

ties this domain to a known threat actor via threat intelligence feeds.

4. AutomatedResponse: XDR or a SOAR platform quarantines the endpoint, blocks the

domain at the firewall, and opens a ticket in the incident management system.

5. SOC Analyst Action: Investigates the entire chain of events, verifies threat removal, and

updates detection rules to prevent similar attacks.

Page 23|36

By combining the strengths of AV,EDR, and XDR logs in a well-structured monitoring strategy,

SOC analysts can respond swiftly to a wide range of threats—from commodity malware to

sophisticated, persistent attacks.

2.5.Cloud Logs (AWS,Azure, GCP) and Container Logs (Docker,

Kubernetes)

Cloud platforms and container orchestration systems have become an essential part of many

organizations. In a SOC environment, monitoring logs from these platforms is critical for threat

detection, compliance, and troubleshooting. Below is an overview of the most important log

sources and practical considerations for AWS, Azure, GCP, Docker, and Kubernetes.

AWS Logs

Common Log Types

1. CloudTrail Logs

o Purpose: Track API calls and account activity across AWS services.

o Key Fields: eventName, eventSource, awsRegion, sourceIPAddress, userAgent,

requestParameters, responseElements.

o Use in Security: Identifies suspicious or unauthorized actions, such as

unexpected changes to IAM policies, creation or deletion of critical resources, or

unusual console logins.

2. CloudWatch Logs

o Purpose: Centralized logging for AWS services (EC2 system logs, Lambda

function logs, etc.).

o Key Fields: Vary depending on service-specific events; typically include

timestamps, log level (ERROR, WARNING, INFO), and custom application

messages.

o Use in Security: Helps correlate system-level events with higher-level activities.

Example: correlating an EC2 instance’s system error logs with an unauthorized

access attempt shown in CloudTrail.

3. VPC FlowLogs

o Purpose: Capture network flow information (source/destination IP,ports, traffic

acceptance/rejection).

o Key Fields: version, account-id, interface-id, srcaddr, dstaddr, srcport, dstport,

protocol, action, log-status.

o Use in Security: Identifies unusual traffic patterns or data exfiltration attempts,

such as large outbound data transfers or traffic from unknown IP ranges.

Practical Example

A typical workflow for ingestion involves forwarding CloudTrail and VPC Flow Logs to an S3

bucket, then using Amazon Kinesis or a third-party tool (e.g., Logstash) to parse and send events

to a SIEM. For example, with AWS CLI youcan enable CloudTrail logging:

Page 24|36

aws cloudtrail create-trail \

--name MySecurityTrail \

--s3-bucket-name my-security-logs \

--include-global-service-events

For more details, see the AWS CloudTrail Documentation.

Azure Logs

Common Log Types

1. AzureActivity Logs

o Purpose: Provide insights into management operations (e.g., resource creation,

modification, or deletion).

o Key Fields: authorization, caller, category, operationName, resourceId, status.

o Use inSecurity: Detect unauthorized resource creation, changes to security

groups, or attempts to elevate privileges.

2. Azure Monitor Logs(LogAnalytics)

o Purpose: Collect logs from Azure resources, containers, VMs, and applications.

o Key Fields: Vary based on the resource type; commonly include timestamps,

operation IDs, user details, and other contextual data.

o Use in Security: Offers extensive querying and correlation capabilities. SOC

teams can detect anomalies by combining signals from multiple sources

(Activity Logs, VM logs, etc.).

3. Diagnostics Logs

o Purpose: Detailed insights from specific Azure services, such as Key Vault

access logs, Azure App Service logs, or Azure Storage logs.

o Key Fields: Depend on the service but often include request endpoints,

authentication details, and result codes.

o Use in Security: Detects potential credential misuse, suspicious activity in data

storage, or unusual application behavior.

Practical Example

Sending logs to Azure Monitor can be done by configuring a Diagnostic Setting for each

resource. For instance, to route Activity Logs to Azure Monitor and a storage account:

Set-AzDiagnosticSetting -ResourceId

/subscriptions/<SUBSCRIPTION_ID>/resourceGroups/<RESOURCE_GROUP>/pro

viders/Microsoft.Web/sites/<APP_NAME> `

-WorkspaceId <AZURE_MONITOR_WORKSPACE_ID> `

-StorageAccountId

/subscriptions/<SUBSCRIPTION_ID>/resourceGroups/<RESOURCE_GROUP>/pro

viders/Microsoft.Storage/storageAccounts/<STORAGE_ACCOUNT_NAME> `

Page 25|36

-Enabled $true

Refer to Azure Monitor Documentation for more details.

GCP Logs

Common Log Types

1. Cloud Audit Logs

o Purpose: Record admin and data access events for GCP services (similar to

AWS CloudTrail).

o Key Fields: protoPayload.serviceName, protoPayload.methodName,

resourceName, authenticationInfo, requestMetadata.

o Use in Security: Surface privilege escalation attempts or suspicious

modifications to GCP resources (e.g., enabling/disabling critical services).

2. VPC FlowLogs

o Purpose: Collect network flow information for Google Cloud VPCs.

o Key Fields: srcIP, destIP, srcPort, destPort, protocol, connectionEstablished,

bytesSent, bytesReceived.

o Use in Security: Spot reconnaissance or exfiltration activity by analyzing

inbound and outbound traffic patterns.

3. Cloud Logging

o Purpose: Central logging service for events from GCP services, containers,

custom applications.

o Key Fields: Service-specific data, timestamps, severity levels, resource labels

(e.g., k8s_container, gce_instance).

o Use inSecurity: Enables correlation of application-level logs with

infrastructure-level events.

Practical Example

Toexport GCP logs to a SIEM, youcan create a sink that routes logs to a Pub/Sub topic, which a

custom or third-party collector can then forward. An example using the gcloud CLI:

gcloud logging sinks create my-security-sink \

storage.googleapis.com/<BUCKET_NAME> \

--log-filter="resource.type=gce_instance AND severity>=WARNING"

For detailed guidance, see Google Cloud Logging Documentation.

Container Logs (Docker, Kubernetes)

Containers package applications and their dependencies into a single lightweight unit. Because

containers often run ephemeral workloads, continuous and standardized logging is key to

security monitoring.

Page 26|36

Docker Logs

1. Docker Engine Logs

o Location: Typically stored in /var/log/docker.log on Linux hosts.

o Key Fields: Daemon-level events, such as container starts/stops, image pulls,

errors from container runtime.

o Use in Security: Identify unauthorized container creation or malicious images

being pulled from untrusted registries.

2. Container STDOUT/STDERRLogs

o Location: By default, stored in

/var/lib/docker/containers/<container_id>/<container_id>-json.log.

o Use in Security: Detect anomalies within running applications (e.g., repeated

error messages indicating a brute-force attempt or application misuse).

1. Docker Logging Drivers

o Types: json-file, syslog, fluentd, gelf, awslogs, and others.

o Use in Security: Can integrate with centralized logging solutions, reducing the

chance of log tampering if the container is compromised.

Docker Example

Using the syslog logging driver, youcan direct container logs to a remote syslog server:

docker run --log-driver=syslog --log-opt syslog-

address=tcp://192.168.1.10:514 \

--log-opt tag="{{.ImageName}}/{{.Name}}/{{.ID}}" \

my_secure_image

Refer to Docker Logging Documentation for configuration details.

Kubernetes Logs

1. Container Logs

o Collection: Typically gathered via kubectl logs <pod_name>or via a logging

agent (Fluentd, Logstash, or a sidecar pattern).

o Use in Security: Detect suspicious application errors or specific triggers such

as repeated 401/403 responses indicating an authentication brute-force

attempt.

2. Kubelet Logs

o Location: Paths differ depending on the OS distribution; can include

/var/log/kubelet.log.

o Use inSecurity: Track container scheduling issues, unauthorized attempts to

schedule privileged pods, or interactions that could indicate a compromised

node.

Page 27|36

3. Control Plane Logs (APIServer, Scheduler, Controller Manager)

o Location: Often under /var/log/ on the control plane node or aggregated using a

centralized logging solution.

o Use in Security: Identify unauthorized API calls, suspicious pod creations, or

attempts to escalate privileges via Kubernetes role bindings.

4. Audit Logs

o Purpose: Record every request to the Kubernetes API server.

o Configuration: Enable auditing by modifying the --audit-log-path and --audit-

policy-file flags on the APIServer.

o Use in Security: Fundamental for investigating incidents. You can track

everything from RBAC changes to privileged container spawns.

Kubernetes Example

A simple audit policy file (audit-policy.yaml) might look like:

apiVersion: audit.k8s.io/v1

kind: Policy

rules:

- level: Metadata

resources:

- group: ""

resources: ["secrets"]

- level: RequestResponse

resources:

- group: ""

resources: ["pods/exec"]

You can reference the Kubernetes Auditing Documentation for more advanced configurations.

Practical Considerations and Real-World Tips

• Centralization: Whether using AWS CloudWatch, Azure Monitor, Google Cloud Logging,

or self-hosted ELK stacks, centralizing logs from multiple cloud providers and container

platforms is essential for correlation.

• Access Controls: Make sure that logs, especially those containing sensitive information

(credentials, personal data), are stored in restricted areas. Configure IAM roles or

equivalent to control who can read or export logs.

• Alerting and Dashboards: Build targeted alerts. For example, create an alert if a new

Kubernetes cluster role binding is created that grants cluster admin privileges.

Page 28|36

• RetentionPolicies: Align with regulatory requirements. Some industries require keeping

logs for extended periods, whereas others may prioritize cost optimization.

• Log Volume vs. Relevance: Filtering out excessive “noise” helps avoid data overload.

Set up granular logging only where necessary, or implement log sampling for high-

volume events like container debug logs.

• Cross-PlatformCorrelation: When investigating an incident, cross-reference container

logs with the underlying cloud infrastructure logs. For instance, if a malicious container

is identified, reviewing AWS CloudTrail or GCP Cloud Audit logs can show who deployed

it and from where.

By covering these areas, SOC analysts gain better visibility into cloud-based and containerized

environments. Each platform offers different types of logs and various ways to configure them,

but the overarching principle remains the same: you need complete, centralized, and reliable

logging to effectively detect and respond to security incidents.

2.6. IoT/SCADA/OTLogs

IoT(Internet of Things), SCADA (Supervisory Control and Data Acquisition), and OT(Operational

Technology) devices play a critical role in modern industries, from manufacturing floors to

energy grids. Logs generated by these systems provide valuable insights into operational status,

performance metrics, and potential security threats. Monitoring these logs effectively can be

challenging due to the diversity of protocols, the variety of operating systems and firmware

involved, and the high availability requirements that often characterize industrial environments.

Below is an overview of the main considerations, examples of log sources, and best practices to

ensure comprehensive monitoring.

Understanding IoT,SCADA, and OTEnvironments

IoT Overview

IoTdevices are typically embedded systems used in various contexts—smart homes, industrial

sensors, healthcare devices, and more. They often have:

• Limited resources (CPU, memory) making local storage of logs difficult.

• Custom firmware that may or may not produce standardized logs.

• Network constraints such as low-bandwidth or intermittent connectivity.

SCADA and OTSystems

SCADA and other OTsystems control and monitor industrial processes in energy,

manufacturing, transportation, and critical infrastructure. Key distinctions include:

• Real-time or near-real-time processing with strict performance and availability

requirements.

• Use of specialized protocols (e.g., Modbus, DNP3, OPC-UA) where logging capabilities

can differ from those found in ITenvironments.

• Legacy components that might not support current cybersecurity standards or modern

logging frameworks.

Page 29|36

Types of Logs to Monitor
1. System Logs: Embedded operating systems or specialized OS variations used by

industrial controllers (PLCs, RTUs, HMIs) might produce kernel messages or standard

syslog entries when available.

2. Network TrafficLogs: Many industrial protocols can be captured by network sensors or

specialized gateways. Anomalies in traffic—like unexpected Modbus function codes—

may indicate malicious activity or misconfiguration.

3. Application Logs: SCADA software logs events such as operator actions, process

thresholds, alarm states, and device connectivity issues. These logs can reveal

unauthorized changes to critical setpoints.

4. Firmware/Device Logs: IoTand OT devices often generate messages related to

firmware integrity checks or patch updates. Monitoring these can help detect suspicious

attempts to install unauthorized firmware.

5. Security Appliance Logs: When perimeter security is present in industrial networks,

firewalls, IDS/IPS, and dedicated OTsecurity appliances produce logs regarding

intrusion attempts, blocked traffic, and detected threats.

Practical Challenges in Log Collection

1. Protocol Complexity

Many IoTand industrial protocols are proprietary or only partially documented.

Interpreting logs requires an understanding of the specific protocol version and vendor

implementation.

2. Limited Storage and Processing Power
Some devices rotate logs quickly due to limited disk space. SOC analysts may need to

forward these logs to a central server in real time to avoid data loss.

3. High Availability Requirements
Stopping or reconfiguring a production system to enable certain logs might be infeasible

if it disrupts critical operations. Analysts must plan logging configurations carefully,

often during scheduled downtimes.

4. Segmentationand Air Gaps
Industrial networks are sometimes isolated (“air-gapped”) from corporate networks.

Secure mechanisms (e.g., data diodes, jump hosts) are needed to relay logs without

introducing new vulnerabilities.

Best Practices for Monitoring

1. Standardize and Normalize Logs

Whenever possible, configure devices to output logs in a standardized format, such as syslog or

JSON. This step simplifies ingestion into a SIEM or log management solution.

Example: Configuring syslog on a Linux-based industrial controller

sudo apt-get install rsyslog

sudo systemctl enable rsyslog

P a g e 30 |36

Configure /etc/rsyslog.conf to forward logs

. @192.168.100.10:514

In an OT environment, you may need vendor-specific documentation to enable syslog

forwarding. If syslog is not an option, use an industrial gateway or a protocol converter that can

parse native logs and send them in a common format.

2. Correlate with Physical Process Data

SCADA systems often track process variables (e.g., temperature, pressure, flow). Cross-

referencing these metrics with login attempts or configuration changes can reveal malicious or

erroneous actions. Correlation rules in your SIEM might look for:

• Sudden setpoint changes followed by alarm acknowledgments.

• Unauthorized user accounts created just before critical equipment is taken offline.

• Repeated networkscans coinciding with elevated temperature readings on IoT

sensors.

3. Implement Least Privilege and Access Controls

Modern industrial solutions often include role-based access controls. Logs from identity and

access management tools show who accessed the system and what changes were made:

• Ensure all logins and role escalations are recorded.

• Enable multi-factor authentication (MFA) for remote connections to SCADA and OT

consoles.

4. Monitor for Firmware Updates and Integrity

Unscheduled or unauthorized firmware updates can be an early sign of compromise. Monitor

logs for:

• Firmwareversion mismatch or unexpected reboots.

• Device reimaging events occurring outside normal maintenance windows.

Many industrial device vendors provide integrity-check features. Leverage these and forward

related events to the SOC for review.

5. Leverage Specialized Threat Intelligence

Threat intelligence feeds focusing on ICS/SCADA vulnerabilities can help enrich your log

analysis. For instance, MITRE ATTCCK for ICS

(https://collaborate.mitre.org/attackics/index.php/Main_Page) lists techniques and tactics used

by adversaries targeting operational technology. Incorporating these indicators into your

monitoring rules can enhance detection capabilities.

Real-World Examples

Example 1: Power Grid Manipulation Attempt

An attacker gains access to a SCADA workstation used to manage a regional power grid. Review

of the logs shows:

1. Multiple failed RDP logins from an external IP.

Page 31|36

2. Successful login under an admin account (possibly via stolen credentials).

3. Sudden changes in circuit breaker open/close commands issued at unusual times.

Cross-referencing logs from the SCADA software with firewall logs reveals inbound connections

bypassed normal VPN channels, indicating a compromise on the perimeter. The timely

correlation of these logs prevented a large-scale outage.

Example 2: Compromised IoT Sensor Network

A manufacturing facility experiences irregular temperature readings from a cluster of IoT

sensors. Logs collected from the device management platform show:

1. Unusual spike in network traffic directed at the sensors.

2. Firmwaretamperingattempts logged by the device’s built-in integrity checks.

3. Outboundconnections from the sensors to unauthorized IPaddresses.

Investigation finds that the sensors had outdated firmware with a known vulnerability. Patching

them quickly and blocking the malicious IP addresses at the firewall mitigated further data

exfiltration and potential system damage.

Comparative Overview

Aspect IoT SCADA /OT

PrimaryFocus Smart devices C sensors Industrial process control

Logging Formats Often proprietary or minimal Syslog, proprietary (e.g., PLC logs)

Protocols MǪTT,CoAP, HTTP(S) Modbus, DNP3, OPC-UA

Security Varies widely; often unpatched Safety, availability, real-time ops

Challenges Resource constraints Legacy systems, air-gapped networks

Actionable Steps for SOC Analysts

1. Identify Key Log Sources: Prioritize critical controllers (PLCs, RTUs) and high-impact

IoTdevices.

2. Establish Secure Log Forwarding: Use encrypted channels (e.g., TLS, SSH tunnels)

when sending logs across network boundaries.

3. Create BaselineProfiles: Understand normal operation of devices and detect

deviations. For instance, if a PLC typically receives commands only during business

hours, an alert can trigger on after-hours changes.

4. Combine Networkand Host-Based Monitoring: Many attacks against OTsystems

involve lateral movement or pivot from the ITside. Include NetFlow, firewall, and

endpoint logs in your analysis.

Page 32|36

5. Review VendorGuidance: Major industrial vendors like Siemens, Rockwell Automation,

and Schneider Electric publish documentation on best practices for logging and

security. Stay up to date with vendor patches and advisories.

Page 33|36

3.KeyMonitoring Practice
Effective log monitoring hinges on sound processes, properly configured tools, and clear

objectives. SOC analysts should focus on strategies that help distinguish normal from

suspicious behaviors, preserve and protect relevant data, and leverage automation where

possible. The following practices outline core considerations for detecting anomalies, retaining

logs securely, and employing supporting technologies.

1. DetectingAnomalies and Incidents (Alerts, Correlation)

Anomaly Detection vs. Signature-Based Detection

Anomaly detection involves establishing a baseline of normal operations and flagging

deviations. This is useful for identifying zero-day threats or unusual user behavior. In contrast,

signature-based detection relies on known indicators of compromise (IoCs), such as specific IP

addresses, hash values, or attack patterns. Most modern SOCs use a hybrid approach to

capture both unknown threats (anomalies) and known malicious activity (signatures).

Contextual Analysis of Logs

When investigating events, it is rarely enough to look at a single log source. Correlating data

across multiple sources (e.g., firewall, endpoint detection and response [EDR], and Active

Directory logs) can reveal sophisticated attacks. For instance, seeing repeated user

authentication failures in an Active Directory log and simultaneous unusual outbound

connections in a firewall log could point to a brute-force attempt followed bydata exfiltration.

Alert Thresholds and Fine-Tuning

SOC teams often deploy alert rules on SIEM or IDS/IPS systems to notify them of suspicious

activities. Balancing these thresholds is critical:

• Toostrict: Risk flooding the SOC with false positives, causing alert fatigue and missed

real threats.

• Toorelaxed: Allows significant security incidents to gounnoticed, delaying response

and remediation.

Finding the right balance often requires iterative tuning based on historical data, environment

specifics, and known business processes.

Real-World Example
Consider a situation where a user account is suddenly accessing hundreds of files on a file

server at unusual hours. Anomaly detection rules might flag this behavior if it deviates from the

normal usage pattern of that user. Meanwhile, a signature-based rule might detect that some of

these files match known malicious toolkits (e.g., Mimikatz or similar). Correlating both alerts

enables SOC analysts to identify a potential account compromise and data theft incident much

faster.

Sample SIEMǪuery (Splunk)

index=windows_logs sourcetype=WinEventLog:Security

EventCode=4625 OR EventCode=4624

Page 34|36

| stats count by Account_Name, EventCode

| where count > 20

In this example, the query checks for successful logons (4624) or failed logons (4625) and looks

for any account logging multiple times beyond a threshold, which could indicate brute force or

lateral movement attempts.

3.2. Log Retention and Security

Retention Policies

Logs must be kept for a specified duration, often defined by organizational policies, regulations

(e.g., PCI DSS, HIPAA), and compliance standards. Typical retention periods range from 90 days

to multiple years, depending on the data sensitivity and industry requirements. SOC analysts

should verify that retention policies align with both threat-hunting needs and legal obligations.

Log Storage Considerations
• Centralized Storage: Storing logs in a single repository (e.g., a SIEM or log management

platform) simplifies searching, correlation, and backup.

• Redundancy: Using multiple storage locations or clustering ensures logs remain

available even if hardware fails.

• Encryption: Encrypting logs at rest (e.g., using disk-level encryption) and in transit (e.g.,

TLS for log forwarding) prevents unauthorized access.

• Access Controls: Implement role-based access controls (RBAC) so that only

authorized personnel can view or manipulate sensitive logs.

Handling Log Integrity

Topreserve evidentiary value, organizations should ensure logs cannot be easily tampered with:

1. Hashing: Generating hashes (e.g., using SHA-256) for log files and storing them

separately helps detect unauthorized modifications.

2. Write-Once-Read-Many (WORM) Storage: Some platforms support WORM-like

functionality where logs can be written but not altered afterward.

3. Audit Trails: Keep track of who accessed the log repository, when they accessed it, and

what changes (if any) were made.

Example of Secure Log Storage
A company might use an Amazon S3 bucket with versioning and server-side encryption enabled

for archiving logs from on-premises systems. The AWS Key Management Service (KMS) provides

secure key storage, while AWS Identity and Access Management (IAM) enforces strict

permissions. Official documentation on this setup can be found on the AWS Documentation

pages.

Page 35|36

3.3. Supporting Tools (SIEM, SOAR)

SIEM (Security Information and Event Management)
SIEM solutions collect, parse, and normalize logs from various sources, allowing analysts to

search, correlate, and generate alerts in near real time. Common SIEM platforms include

Splunk Enterprise Security, IBM ǪRadar, and Microsoft Sentinel. Key features:

• Log AggregationandNormalization: Standardizes events to a common format.

• Correlation Rules: Creates alerts when multiple indicators occur in a defined

sequence.

• Dashboarding and Reporting: Offers visual interfaces for monitoring security posture

and presenting metrics to management.

SOAR (Security Orchestration, Automation, and Response)

SOAR platforms automate tasks that analysts would otherwise perform manually. Examples

include Palo Alto Networks Cortex XSOAR (formerly Demisto) and Splunk Phantom. These tools

can be configured to:

1. Enrich Alerts: Automatically gather host or network information from threat intelligence

sources.

2. Contain Incidents: For instance, disable a compromised user account or isolate a

malicious endpoint.

3. Orchestrate Responses: Trigger workflows that involve multiple security and IT

systems.

Automation and Playbooks

A standard approach in SOAR is to develop playbooks—automated workflows that define how

to respond to specific incidents. For example, if an alert indicates a suspicious PowerShell

script ran on a server, a playbook might:

1. Retrieve relevant endpoint logs.

2. Compare the script hash with a threat intelligence database.

3. Ǫuarantine the host if the hash is malicious.

4. Create a ticket in the incident management system.

High-Level Comparison of SIEM vs. SOAR

Feature SIEM SOAR

Primary Focus
Centralizing logs, correlation,

alerts
Automating and orchestrating responses

Data

Processing

Aggregation and analysis of large

volumes of log data

Integration with multiple security/IT tools

to enrich and act on alerts

Page 36|36

Feature SIEM SOAR

Typical Output
Security alerts, dashboards,

reports

Workflow automation, playbooks, and

containment actions

Usage

Complexity
Medium to High

Medium to High (depends on desired

automation)

In many cases, SOCs integrate both SIEM and SOAR for comprehensive coverage. The SIEM

handles large-scale ingestion and correlation, while the SOAR platform automates investigation

and response steps. This integration reduces mean time to detect (MTTD)and mean time to

respond (MTTR), ultimately strengthening the organization’s security posture.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

